Search results for "model order"

showing 5 items of 5 documents

Model order effects on ICA of resting-state complex-valued fMRI data : application to schizophrenia

2018

Abstract Background Component splitting at higher model orders is a widely accepted finding for independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data. However, our recent study found that intact components occurred with subcomponents at higher model orders. New method This study investigated model order effects on ICA of resting-state complex-valued fMRI data from 82 subjects, which included 40 healthy controls (HCs) and 42 schizophrenia patients. In addition, we explored underlying causes for distinct component splitting between complex-valued data and magnitude-only data by examining model order effects on ICA of phase fMRI data. A best run selection me…

AdultMalecomplex-valued fMRI dataSchizophrenia (object-oriented programming)RestModels Neurologicalphase datata3112050105 experimental psychology03 medical and health sciences0302 clinical medicinetoiminnallinen magneettikuvausComponent (UML)medicineImage Processing Computer-AssistedHumans0501 psychology and cognitive sciencesDefault mode networkMathematicsta113model orderBrain MappingPrincipal Component AnalysisskitsofreniaResting state fMRImedicine.diagnostic_testModel orderbusiness.industryGeneral Neuroscience05 social sciencesBrainsignaalianalyysiPattern recognitionData applicationcomponent splittingIndependent component analysisMagnetic Resonance ImagingOxygenSchizophreniaFemaleArtificial intelligencebusinessFunctional magnetic resonance imagingindependent component analysis (ICA)030217 neurology & neurosurgery
researchProduct

Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis

2014

Background: Independent component analysis (ICA) has been often used to decompose fMRI data mostly for the resting-state, block and event-related designs due to its outstanding advantage. For fMRI data during free-listening experiences, only a few exploratory studies applied ICA.New method: For processing the fMRI data elicited by 512-s modern tango, a FFT based band-pass filter was used to further pre-process the fMRI data to remove sources of no interest and noise. Then, a fast model order selection method was applied to estimate the number of sources. Next, both individual ICA and group ICA were performed. Subsequently, ICA components whose temporal courses were significantly correlated …

AdultMalereal-world experiencesComputer scienceSpeech recognitionFast Fourier transformDiffusion mapTIME-SERIESfast model order selectionORDER SELECTION050105 experimental psychologyYoung AdultNUMBER03 medical and health sciences0302 clinical medicineImage Processing Computer-AssistedDiffusion mapHumans0501 psychology and cognitive sciencesICABlock (data storage)ta113Brain MappingPrincipal Component AnalysisGeneral NeurosciencefMRI05 social sciencesBrainFilter (signal processing)Magnetic Resonance ImagingIndependent component analysisSpectral clusteringOxygenMODELDIFFUSION MAPSAcoustic StimulationFFT filterta6131Auditory PerceptionFemaleHUMAN BRAIN ACTIVITYNoise (video)DYNAMICAL-SYSTEMSDigital filterMusic030217 neurology & neurosurgeryMRIJournal of Neuroscience Methods
researchProduct

Snowball ICA: A Model Order Free Independent Component Analysis Strategy for Functional Magnetic Resonance Imaging Data

2020

In independent component analysis (ICA), the selection of model order (i.e., number of components to be extracted) has crucial effects on functional magnetic resonance imaging (fMRI) brain network analysis. Model order selection (MOS) algorithms have been used to determine the number of estimated components. However, simulations show that even when the model order equals the number of simulated signal sources, traditional ICA algorithms may misestimate the spatial maps of the signal sources. In principle, increasing model order will consider more potential information in the estimation, and should therefore produce more accurate results. However, this strategy may not work for fMRI because …

Scale (ratio)Computer sciencedimension reduction050105 experimental psychologylcsh:RC321-57103 medical and health sciencestoiminnallinen magneettikuvaus0302 clinical medicineSoftwareComponent (UML)0501 psychology and cognitive sciencesmutual informationlcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySelection (genetic algorithm)Original Researchmodel ordersignaalinkäsittelyNoise (signal processing)business.industryGeneral NeuroscienceDimensionality reduction05 social sciencessignaalianalyysiriippumattomien komponenttien analyysiPattern recognitionMutual informationIndependent component analysisfunctional magnetic resonance imagingindependent component analysisArtificial intelligencebusiness030217 neurology & neurosurgeryNeuroscienceFrontiers in Neuroscience
researchProduct

Consistency of Independent Component Analysis for FMRI

2021

Background Independent component analysis (ICA) has been widely used for blind source separation in the field of medical imaging. However, despite of previous substantial efforts, the stability of ICA components remains a critical issue which has not been adequately addressed, despite numerous previous efforts. Most critical is the inconsistency of some of the extracted components when ICA is run with different model orders (MOs). New Method In this study, a novel method of determining the consistency of component analysis (CoCA) is proposed to evaluate the consistency of extracted components with different model orders. In the method, “consistent components” (CCs) are defined as those whic…

model ordertoiminnallinen magneettikuvausconsistencysignaalinkäsittelyfMRIsignaalianalyysiICA
researchProduct

Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance…

2019

Background. Stability of spatial components is frequently used as a post-hoc selection criteria for choosing the dimensionality of an independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data. Although the stability of the ICA temporal courses differs from that of spatial components, temporal stability has not been considered during dimensionality decisions. New method. The current study aims to (1) develop an algorithm to incorporate temporal course stability into dimensionality selection and (2) test the impact of temporal course on the stability of the ICA decomposition of fMRI data via tensor clustering. Resting state fMRI data were analyzed with two popu…

model ordertoiminnallinen magneettikuvaustensor clusteringfMRIsignaalianalyysistabilityindependent component analysis (ICA)
researchProduct